
Markerless 3D Face Tracking

Christian Walder1,2, Martin Breidt1, Heinrich Bülthoff1, Bernhard Schölkopf1,
and Cristóbal Curio1⋆

1 Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
2 Informatics and Mathematical Modelling, Technical University of Denmark.

Abstract. We present a novel algorithm for the markerless tracking of
deforming surfaces such as faces. We acquire a sequence of 3D scans
along with color images at 40Hz. The data is then represented by im-
plicit surface and color functions, using a novel partition-of-unity type
method of efficiently combining local regressors using nearest neighbor
searches. Both these functions act on the 4D space of 3D plus time, and
use temporal information to handle the noise in individual scans. After
interactive registration of a template mesh to the first frame, it is then
automatically deformed to track the scanned surface, using the variation
of both shape and color as features in a dynamic energy minimization
problem. Our prototype system yields high-quality animated 3D mod-
els in correspondence, at a rate of approximately twenty seconds per
timestep. Tracking results for faces and other objects are presented.

1 Introduction

Creating animated 3D models of faces is an important and difficult task in com-
puter graphics due to the sensitivity of the human perception of face motion. Peo-
ple can detect slight peculiarities present in an artificially animated face model,
which makes the animator’s job rather difficult and has lead to data-driven an-
imation techniques, which aim to capture live performance. Data-driven face
animation has enjoyed increasing success in the movie industry, mainly using
marker-based methods. Although steady progress has been made, there are cer-
tain limitations involved in placing physical markers on a subject’s face. Sum-
marizing the face by a sparse set of locations loses information, and necessitates
motion re-targeting to map the marker motion onto that of a model suitable
for animation. Markers also occlude the face, obscuring expression wrinkles and
color changes. Practically, significant time and effort is required to accurately
place markers, especially with brief scans of a numerous subjects — a scenario
common in the computer game industry.

Tracking without markers is more difficult. To date, most attempts have
made extensive use of optical flow calculations between adjacent time-steps of
the sequence. Since local flow calculations are noisy and inconsistent, spatial
coherency constraints must be added. Although significant progress has been

⋆ This work was supported by Perceptual Graphics (DFG), EU-Project BACS FP6-
IST-027140, and the Max-Planck-Society.

2

Fig. 1. Setup of the dynamic 3D scanner. Two 640 by 480 pixel photon focus MV-D752-160 gray-
scale cameras (red) compute depth images at 40 Hz from coded light projected by the synchronized
minirot H1 projector (blue). Two strobes (far left and right) are triggered by the 656 by 490 pixel
Basler A601fc color camera (green), capturing color images at a rate of 40 Hz.

made [1], the sequential use of between-frame flow vectors can lead to continual
accumulation of errors, which may eventually necessitate labor intensive manual
corrections [2]. It is also noteworthy that facial cosmetics designed to remove
skin blemishes strike directly at the key assumptions of optical flow-based meth-
ods. Non flow-based methods include [3]. There, local geometrical patches are
modelled and stitched together. [4] introduced a multiresolution approach which
iteratively solves between-frame correspondence problems using feature points
and 3D implicit surface models. Neither of these works use color information.
For face tracking purposes, there is significant redundancy between the geome-
try and color information. Our goal is to exploit this multitude of information
sources, in order to obtain high quality tracking results in spite of possible am-
biguities in any of the individual sources. In contrast to classical motion capture
we aim to capture the surface densely rather than at a sparse set of locations.

We present a novel surface tracking algorithm which addresses these issues.
The input is an unorganized set of four-dimensional (3D plus time) surface
points, with a corresponding set of surface normals and surface colors. From
this we construct a 4D implicit surface model, and a regressed function which
models the color at any given point in space and time. Our 4D implicit surface
model is a partition of unity method like [5], but uses a local weighting scheme
which is particularly easy to implement efficiently using a nearest neighbor li-
brary. By requiring only an unorganized point cloud, we are not restricted to
scanners which produce a sequence of 3D frames, and can handle samples at
arbitrary points in time and space as produced by a laser scanner, for example.

2 Surface Tracking

In this section we present our novel method of deforming the initial template
mesh to move in correspondence with the scanned surface. The dynamic 3D
scanner we use is a commercial prototype (see Figure 1) developed by ABW
GmbH (http://www.abw-3d.de) and uses a modified coded light approach
with phase unwrapping. A typical frame of output consists of around 40K points
with texture coordinates that index into the corresponding color texture image.

Input. The data produced by our scanner consists of a sequence of 3D meshes
with texture images, sampled at a constant rate. As a first step we transform each

3

mesh into a set of points and normals, where the points are the mesh vertices and
the corresponding normals are computed by a weighted average of the adjacent
face normals, using the method described in [6]. Furthermore, we append to
each 3D point the time at which it was sampled, yielding a 4D spatio-temporal
point cloud. To simplify the subsequent notation, we also append to each 3D
surface normal a fourth temporal component of value zero. To represent the
color information, we assign to each surface point a 3D color vector representing
the RGB color, which we obtain by projecting the mesh produced by the scanner
into the texture image. Hence we summarize the data from the scanner as the
set of m (point, normal, color) triplets {(xi,ni, ci)}i<1<m ⊂ R

4 × R
4 × R

3.
Template mesh. In addition to the above data, we also require a template

mesh in correspondence with the first frame produced by the scanner, which we
denote by M1 = (V1, G), where V1 ∈ R

3×n are the n vertices and G ⊂ J × J
the edges where J = {1, 2, . . . , n}. The construction of the template mesh could
be automated — for example we could (a) take the first frame itself (or some
adaptive refinement of it, for example as produced by a marching cubes type
of algorithm such as [7]), or (b) automatically register a custom mesh as was
done in a similar context in e.g. [1]. Instead we opt for an interactive approach,
using the CySlice software package — this semi-automated step requires approx-
imately 15 minutes of user interaction and is guaranteed to lead to a high quality
initial registration (see Figure 3, top left). We normally use a template mesh of
2100 vertices, but this is not an algorithmic restriction, higher res meshes are
demonstrated in the accompanying video (see footnote 1, page 7).

Output. The aim is to compute the vertex locations of the template mesh
for each frame i = 2, . . . s, such that it moves in correspondence with the ob-
served surface. We denote the vertex locations of the i-th frame by Vi ∈ R

3×n.
Throughout the paper we refer to the j-th vertex of Vi as vi,j . We also use
ṽi,j ∈ R

4 to represent vi,j concatenated with the relative time of the i-th frame.
That is, ṽi,j = (v⊤

i,j ,∆i)⊤ where ∆ is the interval between frames.

2.1 Algorithm

We take the widespread approach of minimizing an energy functional, Eobj.,
which in our case is defined in terms of the entire sequence of vertex locations,
V1, V2, . . . , Vs. Rather than using the (point, normal, color) triplets directly, we
instead use summarized versions of the geometry and color, as represented by the
implicit surface embedding function fimp. and color function fcol., respectively.
The construction of these functions is explained in detail in Appendix A. For
now it is sufficient to know that the functions can be setup and evaluated rather
efficiently, are differentiable almost everywhere, and

1. fimp. : R
4 → R estimates the signed distance to the scanned surface given

the spatio-temporal location (say, x = (x, y, z, t)⊤). The signed distance to
a surface S evaluated at x has absolute value |dist(S,x)|, and a sign which
differs on different sides of S. At any fixed t, the 4D implicit surface can be
thought of as a 3D implicit surface in (x, y, z) (see Figure 2, left).

4

−0.2

0

0.2

0.4

0.6

0.8

1 Fig. 2. The nearest neighbor implicit sur-

face (left, intensity plot of fimp.) and color
(right, RGB plot of fcol.) models. Time and
one space dimension are fixed, plotting over
the two remaining space dimensions. Shown
is a vertical slice through the data of a hu-
man face, revealing the profile contour with
the nose pointing to the right. For reference,
the zero level set of the implicit appears in
both images as a green curve.

2. fcol. : R
4 → R

3 similarly estimates a 3-vector of RGB values. Evaluated
away from the surface, the function returns an estimate of the color of the
surface nearest to the evaluation point (see Figure 2, right).

Modelling the geometry and color in this way has the practical advantage that as
we construct fimp. and fcol. we may separately adjust parameters which pertain
to the noise level in the raw data, and then visually verify the result. Thereafter
we approach the tracking problem under the assumption that fimp. and fcol.

contain little noise, while summarizing the relevant information in the raw data.
The energy we minimize depends on the vertex locations through time and

connectivity (edge list) of the template mesh, the implicit surface model, and the
color model, i.e., V1, . . . Vs, G, fimp., and fcol.. With a slight abuse of notation,
the functional is Eobj. ≡

∑

l∈terms αlEl, where the αl are parameters which we
fix as described in Section 2.2, and the El are the individual terms which we
now introduce. Note that it is possible to interpret the minimizer of the above
energy functional as the maximum a posteriori estimate of a posterior likelihood
in which the individual terms αlEl are interpreted as negative log-probabilities.

Distance to the Surface. The first term is straightforward — in order to
keep the mesh close to the surface, we approximate the integral over the template
mesh of the squared distance to the scanned surface. As an approximation to this
squared distance we take the squared value of the implicit surface embedding
function fimp.. We approximate the integral by taking an area weighted sum over

the vertices. The quantity we minimize is given by Eimp. ≡
∑

i

∑

j ajfimp. (ṽi,j)
2
.

Here, as throughout the paper, aj refers to the Voronoi area [6] of the j-th vertex
of M1, the template mesh at its starting position, but we state the simpler form
here as it is easier to implement, and is more numerically stable.

Color. We assume that each vertex should remain on a region of stable
color, and accordingly we minimize the sum over the vertices of the sample
variance of the color components observed at the sampling times of the dy-
namic 3D scanner. We discuss the validity of this assumption in Section 4. The
sample variance of a vector of observations y = (y1, y2, . . . , ys)

⊤
is V (y) ≡

∑s

i=1 (yi −
∑s

i′=1yi′/s)
2
/s. To ensure a scaling which is compatible with that

of Eimp., we neglect the term 1/s in the above expression. Summing these vari-
ances over RGB channels, and taking the same approximate integral as before,
we obtain Ecol. ≡

∑

i,j aj‖fcol.(ṽi,j) −
∑

i′ fcol.(ṽi′,j)/s‖2.
Acceleration. To obtain smooth motion we also minimize a similar approx-

imation to the surface integral of the squared acceleration of the mesh. For a

5

physical analogy, this is similar to minimizing a discretization in time and space
of the integral of the squared accelerating forces acting on the mesh, assuming
that it is perfectly flexible and has constant mass per area. The corresponding
term is given by Eacc. ≡

∑

j aj

∑s−1
i=2 ‖vi−1,j − 2vi,j + vi+1,j‖

2.
Mesh Regularisation. In addition to the previous terms, it is also necessary

to regularize deformations of the template mesh, in order to prevent unwanted
distortions during the tracking phase. Typically such regularization is done by
minimizing measures of the amount of bending and stretching of the mesh. In
our case however, since we are constraining the mesh to lie on the surface defined
by fimp., which itself bends only as much as the scanned surface, we only need
to control the stretching of the template mesh.

Due to space constraints we now only briefly motivate our choice of regu-
lariser. It is possible to use variational measures of mesh deformations, but we
found these energies inappropriate in our experiments as it was difficult to choose
the correct amount by which to penalize the terms — either: (1) the penalization
was insufficient to prevent undesirable stretching of the mesh in regions of low
deformation, or (2) the penalization was too great to allow the correct deforma-
tion in regions of high deformation. It is more effective to penalize an adaptive
measure of stretch, which measures the amount of local distortion of the mesh,
while retaining invariance to the absolute amount of stretch. To this end, we
compute the ratio of the area of adjacent triangles, and penalize the deviation
of this ratio, from that of the initial template mesh M1, i.e.

Ereg. ≡

s
∑

i=2

∑

e∈G

a(e)

(

area(face1(ei))

area(face2(ei))
−

area(face1(e1))

area(face2(e1))

)2

.

Here, face1(e) and face2(e) are the two triangles containing edge e, area(·) is
the area of the triangle, and a(e) = area(face1(e1)) + area(face2(e1)). Note that
the ordering of face1 and face2 affects the above term. In practice we restore
invariance with respect to this ordering by augmenting the above energy with
an identical term with reversed order.

2.2 Implementation

Deformation Based Re-parameterization. Optimising with respect to the
3(s−1)n variables corresponding to the n 3D vertex locations of frames 2, 3, . . . , s
has the following critical shortcomings: 1) It necessitates further regularisation
terms to prevent folding and clustering of the mesh, for example. 2) The num-
ber of variables is rather large. 3) Compounding the previous shortcoming, con-
vergence will be slow, as this direct parameterization is guaranteed to be ill-
conditioned. This is because, for example, the regularisation term Ereg. acts in
a sparse manner between individual vertices. Hence, loosely speaking, gradients
in the objective function due to local information (for example due to the color
term Ecol.) will be propagated by the regularisation term in a slow domino-like
manner from one vertex to the next only after each subsequent step in the op-
timization. A simple way of overcoming these shortcomings is to optimize with

6

respect to a lower dimensional parameterization of plausible meshes. To do this
we manually select a set of control vertices that are displaced in order to de-
form the template mesh. To this end, we take advantage of some ideas from
interactive mesh deformation [8]. This leads to a linear parameterization of the
vertex locations V2, V3, . . . Vs, namely V i = V1 +PiB, where Pi ∈ R

3×p represent
the free parameters and B ∈ R

p×n represent the basis vectors derived from the
deformation scheme [9]. We have written V i instead of Vi, as we apply another
parameterized transformation, namely the rigid body transformation. This is
necessary since the surfaces we wish to track are not only deformed versions
of the template, but also undergo rigid body motion. Our vertex parameteri-
zation hence takes the form Vi = R(θi)V i + ri = R(θi)(V1 + PiB) + ri, where

r ∈ R
3 allows an arbitrary translation, θi =

(

αi, βi, γi

)⊤
is a vector of angles,

and R(θ) ∈ R
3×3 is a rotation matrix.

Remarks on the re-parameterization. The above scheme does not amount
to tracking only the control vertices. Rather, the objective function covers all
vertices, and the control vertices are optimized to minimize this global error. Al-
ternatively one could optimize all vertex positions in an unconstrained manner.
The main drawback of doing so however is not the greatly increased computa-
tion times, but the fact that allowing each vertex to move freely necessitates
numerous additional regularisation terms in order to prevent undesirable mesh
behaviors such as triangle flipping. While such regularisation terms may succeed
in solving this problem, the above re-parameterization is a more elegant solution,
as we found the problem of choosing various additional regularisation parame-
ters to be more difficult in practice than the problem of choosing a set of control
vertices that is sufficient to capture the motion of interest. Note that the precise
placement of these control vertices is not critical, provided they afford sufficiently
many degrees of freedom. Hence, the computational advantages of our scheme
are a fortunate side effect of the regulariser induced by the re-parameterization.

Incremental Optimization. It turns out that even in this lower dimen-
sional space of parameters, optimizing the entire sequence at once in this man-
ner is computationally infeasible. Firstly, the number of variables is still rather
large: 3(s − 1)(p + 2), corresponding to the parameters {(Pi, θi, ri)}i=2...s. Sec-
ondly, the objective function is rather expensive to compute, as we discuss in
the next paragraph. It turns out however, that optimizing the entire sequence
would be problematic even if it were computationally feasible, due to the diffi-
culty of finding a good starting point for the optimization. Since the objective
function is non-convex, it is essential to be able to find a starting point which
is near to a good local minimum, but it is unclear how to initialize all frames
2, 3, . . . s given only the first frame and the raw scanner data. Fortunately, both
the computational issue and that of the starting point are easily dealt with by
incrementally optimizing within a moving temporal window. In particular, we
first optimize frame 2, then frames 2-3, frames 2-4, frames 3-5, frames 4-6, etc.
With the exception of the first two steps, we always optimize a window of three
frames, with all previous frames held fixed. Importantly, it is now reasonable to

7

Fig. 3. A tracking example visualized by projecting the tracked mesh into the color camera image.

simply initialize the parameters of each newly included frame with those of the
previous frame at the end of the previous optimization step.

Note that although we optimize on a temporal window with the other frames
fixed, we include in the objective function all frames from the first to the cur-
rent, eventually encompassing the entire sequence. Hence Ecol. forces each vertex
inside the optimization window to stay within regions that have a color similar
to that “seen” previously by the given vertex at previous time steps. One could
also treat the final output of the incremental optimization as a starting point
for optimizing the entire sequence with all parameters unfixed, but we found
this leads to little change in practice. This is not surprising as, given the moving
window of three frames, the optimizer essentially has three chances to get each
frame right, with forward and backward look-ahead of up to two frames.

Parameter Selection. We first determined the parameters of the implicit
surface/color models, and the deformation-based re-parameterization, can these
can be visually verified independently of the tracking. Choosing the other pa-
rameters values was fairly straightforward, as e.g. tracking color and staying
near the implicit surface are goals which typically compete very little — either
can be satisfied without compromising the other. Hence the results are rela-
tively insensitive to the αimp./αcol.. To determine suitable parameter setttings
for αimp., αcol., αacc. and αreg., we employed the following strategy. First, we re-
moved a degree of freedom by fixing without loss of generality αimp. = 1. Next
we assumed that the implicit surface was sufficiently reliable, and treated the
distance to surface term almost like the hard constraint Eimp. = 0 by setting the
next parameter αcol. to be 1/100. We then took a sample dataset and ran the
system over a 2D grid of values of Eacc. and Ereg., inspected the results visually,
and fixed these two parameters accordingly for subsequent experiments.

3 Results

Tracking results are best visualised with animation, hence the majority of our
results are presented in the accompanying video1. Here we discuss the perfor-

1 http://www.kyb.tuebingen.mpg.de/bu/people/mbreidt/dagm/

8

mance of the system, and provide images of results of the tracking algorithm,
which ran on a 64 bit, 2.4 GHz AMD Opteron 850 processor with 4 GB of RAM,
using a mixture of Matlab and C++ code. We focus on timings for face data,
and only report averages since the timings vary little over identity/performance.

The recording length is currently limited to 400 frames by operating sys-
tem constraints. Note that this limitation is not due to our tracking algorithm,
which has constant memory and linear time requirements in the length of the
sequence. The dominating computation is evaluation of the objective function
and its gradient during the optimization phase, and of this, around 80% of the
time is on nearest neighbor searches into the scanner data using the algorithm
of [10], in order to evaluate the implicit surface and color models. Including the
1-2 seconds required to build the data structure of the nearest neighbor search
algorithm for each temporal window, the optimization phase of the tracking al-
gorithm required around 20 seconds per frame. Note that only a small fraction
of the recorded data needs to be stored in RAM at any given time. Note also
that the computation times seem to scale roughly linearly with template mesh
density. For example the four-fold upsampled template mesh in the video needed
≈ 3.5 times the computation time.

The tracking results in the accompanying video is convincing, and exhibits
very little accumulation of error, as can be seen by the consistent alignment
of template mesh to the neutral expression in the first and last frames. As no
markers were used, the color camera images provide photo realistic expression
wrinkles. A challenging example is shown in Figure 3, where the algorithm con-
vincingly captures complex deformations. Here we provide a few comments on
the accompanying video, which contains far more results than this paper1. To
test the reliance on color we applied face paint to the female subject. The de-
terioration in performance is graceful in spite of both the high specularity of
the paint and the sparseness of the color information. To demonstrate that the
system is not specific to faces we provide an example in which colored cloth is
tracked using no change to the processing pipeline, except for a different tem-
plate mesh topology. The cloth tracking exhibits only minor inaccuracies around
the border of the mesh where there is less information to resolve the ambigui-
ties due to plain colored and strongly shadowed regions. A final example in the
video1 shows a uniformly colored, deforming, and rotating piece of foam being
tracked using shape cues alone.

4 Discussion and Future Work

By design, our algorithm does not use optical flow calculations as the basis for the
surface tracking. Rather, we combine shape and color information on a coarser
scale, under the assumption that the color does not change excessively on any
part of the surface. This assumption did not cause major problems in the case
of expression wrinkles, as such wrinkles tend to appear and disappear on a part
of the face with little relative motion with respect to the skin. Hence, in terms
of the color penalty in the objective function, wrinkles do not induce a strong

9

force in any specific direction. Although there are other lighting effects which
are more systematic, such as specularities, and self shadowing, we believe these
do not represent a serious practical concern for the following reasons. Firstly, we
found that in practice the changes caused by shadows and highlights were largely
accounted for by the redundancy in color and shape over time. Secondly, it would
be easy to reduce the severity of these lighting effects using light polarisers, more
strobes and lighting normalization based on a model of the fixed scene lighting.
Due to the general lack of available data, we were unable to systematically
compare the performance of our system with that of others. To make a first step
towards establishing a benchmark, we intend to publish data from our system,
in order to allow future comparisons. The tracking system we have presented
is automated, however it is straightforward to modify the energy functional we
minimize in order to allow the user to edit the result by adding vertex constraints
for example. It would also be interesting to develop a system which can improve
the mesh regularisation terms in a face specific manner, by learning from previous
tracking results. Another interesting direction is intelligent occlusion handling,
which could overcome some of the limitations of structured light methods, and
also allow the tracking of more complex self occluding objects.

A KNN Implicit Surface and Color Models

In this appendix, we motivate and define our nearest neighbor based implicit
surface and color models. Our approach falls into the category of partition of
unity methods, in which locally approximating functions are mixed together to
form a global one. Let Ω be our domain of interest, and assume that we have
a set of non-negative (and typically compactly supported) functions {ϕi} which
partition unity, i.e.

∑

i ϕi(x) = 1,∀x ∈ Ω. Now let {fi} be a set of locally
approximating functions for each sup(ϕi). The partition of unity approximating
function on Ω is f(x) =

∑

i ϕi(x)fi(x). The ϕi are typically defined implicitly by
way of a set of compactly supported auxiliary functions {wi}. Provided the wi are
non-negative and satisfy sup(wi) = sup(ϕi), the following choice is guaranteed
to be a partition of unity: ϕi = wi

P

j
wj

. Presently we take the extreme approach

of associating a local approximating function fi with each data point from the
set x1,x2, . . .xm ∈ R

4, produced by our scanner. In particular, for the implicit
surface embedding function fimp. : R

4 → R, we associate with xi the linear
locally approximating function fi(x) = (x − xi)

⊤ni, where ni is the surface
normal at xi. For the color model fcol. : R

4 → R
3, the local approximating

functions are simply the constant vector-valued functions fi(x) = ci, where ci ∈
R

3 represents the RGB color at xi. Note that the above description constitutes
a slight abuse of notation due to our having redefined fi twice.

To define the ϕi, we first assume w.l.o.g. that d1 ≤ d2 ≤ . . . ≤ dk ≤ di, ∀i >
k, where x is our evaluation point and di = ‖x − xi‖. In practice, we obtain
such an ordering by way of a k nearest neighbor search using the TSTOOL
software library [10]. By now letting ri ≡ di/dk and choosing wi = (1 − ri)+,
it is easy to see that the corresponding ϕi are continuous, differentiable almost

10

everywhere, and that we only need to examine the k nearest neighbors of x in
order to compute them. Note that the nearest neighbor search costs are easily
amortized between the evaluation of fimp. and fcol..

Larger values of k average over more local estimates and hence lead to
smoother functions — for our experiments we fixed k = 50. Note that the near-
est neighbor search requires Euclidean distances in 4D, so we must decide, say,
what spatial distance is equivalent to the temporal distance between frames. Too
small a spatial distance will treat each frame separately, too large will smear the
frames temporally. The heuristic we used was to adjust the time scale such that
on average approximately half of the k nearest neighbors of each data point come
from the same time (that is, the same 3D frame from the scanner) as that data
point, so that the other half come from the surrounding frames. In this way we
obtain functions which vary smoothly through space and time. Note that it is
easy to visually verify the effect of this choice by rendering the implicit surface
and color models, as demonstrated in the accompanying video. This method
is particularly efficient when we optimize on a moving window as discussed in
Section 2.2. In this case, reasonable assumptions imply that the implicit surface
and color models enjoy setup and evaluation costs of O(q log(q)) and O(k log(q))
respectively, where q is the number of vertices in a single 3D frame.

References

1. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution
capture for modeling and animation. In: ACM SIGGRAPH. (August 2004)

2. Borshukov, G., Lewis, J.P.: Realistic human face rendering for the matrix reloaded.
In: SIGGRAPH 2003 Sketches, New York, ACM Press (2003)

3. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., Schilling, A.: Recon-
struction of deforming geometry from time-varying point clouds. In: SGP ’07:
Proc. fifth Eurographics symp. on Geometry processing, Aire-la-Ville, Switzerland,
ACM, Eurographics Association (2007) 49–58

4. Huang, X., Zhang, S., Wang, Y., Metaxas, D., Samaras, D.: A hierarchical frame-
work for high resolution facial expression tracking. In: Articulated and non-rigid
motion. Volume 1., Washington, DC, USA, IEEE Computer Society (2004)

5. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of
unity implicits. ACM Trans. on Graphics 22(3) (July 2003) 463–470

6. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete differential-geometry
operators for triangulated 2-manifolds. VisMath 2 (2002) 35–57

7. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: SGP ’06:
Proceedings of the fourth Eurographics symposium on Geometry processing, Aire-
la-Ville, Switzerland, Switzerland, ACM, Eurographics Association (2006) 61–70

8. Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling.
In: SIGGRAPH, New York, NY, USA, ACM, ACM (2004) 630–634

9. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE
Trans. Visualization and Computer Graphics 14(1) (2008) 213–230

10. Merkwirth, C., Parlitz, U., Lauterborn, W.: Fast nearest neighbor searching for
nonlinear signal processing. Phys. Rev. E 62(2) (2000) 2089–2097

